Ch. 11 Notes ~ STATES OF MATTER

NOTE: Vocabulary terms are in **boldface and underlined**. Supporting details are in *italics*.

States of Matter: SOLID, LIQUID, GAS, PLASMA

- I. Kinetic Theory of Matter
 - A. **kinetic energy** (K.E.)
 - 1) energy of motion
 - 2) equation: $KE = \frac{1}{2} mv^2$
 - B. Kinetic-Molecular Theory of Matter (KMT)
 - Matter is composed of PARTICLES.
 - Particle movement is rapid, constant, and random (**Brownian motion**)
 - All collisions are perfectly ELASTIC (complete energy transfer).
 - C. Comparison of physical states
 - 1) gases have the least restriction on motion compared to the other phases of matter, so they have the most particle movement
 - 2) solids have the most restriction on motion compared to the other phases of matter, so they have the least particle movement
- II. Gases—matter with variable shape and variable volume
 - A. kinetic theory of gases
 - Gases are composed of PARTICLES.
 - Particle movement is rapid, constant, and random (**Brownian motion**)
 - All collisions are perfectly ELASTIC (complete energy transfer).
 - B. characteristics of gases
 - 1) low density—mostly space between particles
 - 2) fluidity—flowing movement
 - 3) compression and expansion
 - a) **compression**—particles can be *pressed together*
 - b) **expansion**—particles can be allowed to *move apart*
 - 4) diffusion and effusion
 - a) <u>diffusion</u>—random movement and intermingling of particles to even out the concentration throughout the
 - b) <u>effusion</u>—gas particles escaping through a tiny hole in the container
 - i. Graham's Law: the effusion or diffusion rate of a gas is indirectly (inversely) proportional to the square root of the molar mass of the gas (Thomas Graham, 1805-1869)
 - ii. larger particles move slower; smaller particles move faster

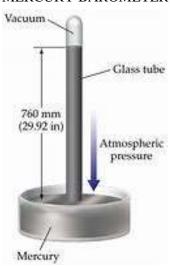
 $\frac{\text{Rate } \mathbf{A}}{\text{Rate B}} = \frac{\sqrt{\text{molar mass B}}}{\sqrt{\text{molar mass A}}}$

at constant temperature

EXAMPLE 1) Carbon dioxide has a molar mass of 44.01 g/mol. Ammonia (NH₃) has a molar mass of 17.03 g/mol. What is a ratio of their diffusion rates?

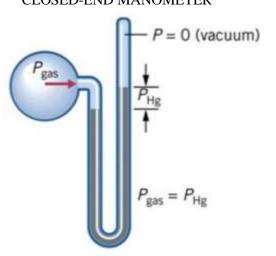
$$CO_2 = A$$
 (mentioned first) $NH_3 = B$ (mentioned second)

$$\frac{\text{Rate CO}_2}{\text{Rate NH}_3} = \frac{\sqrt{17.03 \text{ g/mol}}}{\sqrt{44.01 \frac{\text{g/mol}}{\text{g/mol}}}} = \sqrt{0.3869575...} = \boxed{0.6221} \quad \text{OR} \quad \frac{\sqrt{17.03}}{\sqrt{44.01}} = \frac{\sqrt{4.12674...}}{\sqrt{6.63400...}} = \boxed{0.6221}$$


*** decimal answers <1 show that gas A moves slower than gas B ("low is slow")

*** answers >1 show that gas A moves faster than gas B

C. gas pressure


- 1) **gas pressure**—collisions of gas particles on objects
- 2) <u>atmospheric pressure</u>—collisions of "air" particles on objects
- 3) SI unit of pressure = Pa (Pascal), named after Blaise Pascal (1623-1662)
- 4) pressure measuring instruments
 - a) barometers measure atmospheric pressure
 - b) manometers measure pressure of enclosed gases

MERCURY BAROMETER

Source: Washington.edu

CLOSED-END MANOMETER

Source: Jespersen

5) standard pressure: (this is the "P" from STP)

STANDARD ATMOSPHERIC PRESSURE, 5 ways: 1 atm* 101.3 kPa 14.7 psi 760 mm Hg* 760 torr*

*atm, mm Hg, and torr standards are exact sig.figs.

The unit of torr is named after Evangelista Torricelli (1608-1647)

- 6) (Dalton's Law of partial pressures will be addressed later, in the gas chapter)
- 7) examples of pressure conversions

EXAMPLE 2) Convert a pressure of 847 mm Hg to kPa.

$$847 \frac{\text{mm Hg}}{\text{mm Hg}} \times \frac{101.3 \text{ kPa}}{760 \frac{\text{mm Hg}}{\text{mm Hg}}} = 113 \frac{\text{kPa}}{113 \text{ kPa}}$$

EXAMPLE 3) What is 8.9 psi expressed in atm?

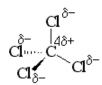
$$8.9 \frac{\text{psi}}{\text{psi}} \times \underline{1 \text{ atm}} = \underline{0.61 \text{ atm}}$$

EXAMPLE 4) 344 mm Hg = psi

344 mm Hg x
$$\frac{14.7 \text{ psi}}{760 \text{ mm Hg}} = \frac{6.65 \text{ psi}}{6.65 \text{ psi}}$$

III. Forces of attraction

- A. intermolecular forces (intermolecular attractions)—forces between molecules
- B. categories
 - 1) *ionic* (between cations and anions)
 - 2) *covalent* (between molecules)
 - 3) *metallic* (metal cations and delocalized electrons)
- C. terms for review
 - 1) polar (bond)—having an unequal sharing of electrons
 - 2) polar (molecule)—having partially positive and partially negative areas partially positive = δ + partially negative = δ -
 - 3) dipole-a polar molecule


POLAR molecule (dipole)

POLAR (asymmetrical)

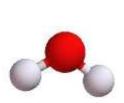
A----B

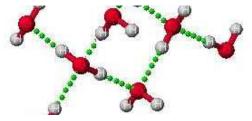
NONPOLAR molecule

NONPOLAR (symmetrical)

Source: webchem.net

- D. types of intermolecular forces
 - van der Waals forces—usually used to describe all intra- and inter-molecular forces other than covalent and ionic bonds (Johannes van der Waals, 1837-1923)
 - 2) <u>dispersion forces</u>, also called <u>London forces</u> after Fritz London (1900-1954)
 - a) the weakest force between molecules
 - b) between two nonpolar molecules
 - c) temporary dipoles form
 - 3) dipole interactions (also called dipole-dipole forces)
 - a) between two polar molecules
 - b) between permanent dipoles

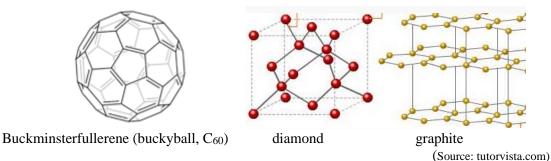

DISPERSION FORCES (Source: UCLA)

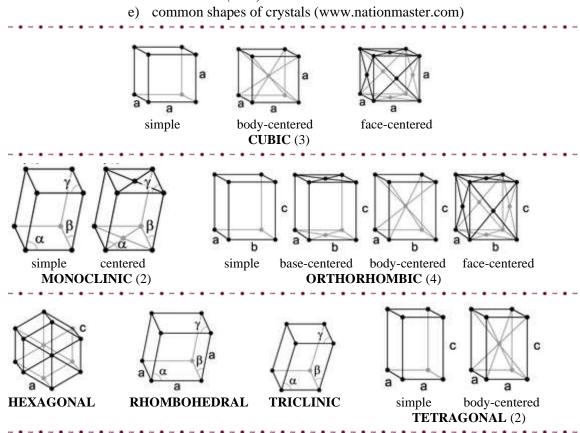

DIPOLE-DIPOLE FORCES

8. H Cl

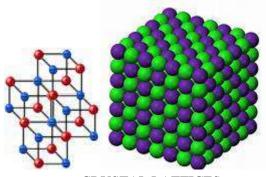
8

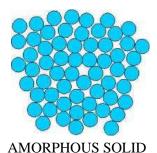
- 4) <u>hydrogen bonds</u>—an attraction between hydrogen and an unshared pair of an electronegative element on a neighboring molecule
 - a) shown as a dotted line between molecules
 - b) not an actual bond between atoms
 - c) strongest intermolecular force




WATER MOLECULE

HYDROGEN BONDING between water molecules (dotted lines)


- IV. <u>Liquids</u>— matter with variable shape and fixed volume
 - A. characteristics
 - 1) density: more dense than gases
 - 2) compressibility: much more difficult to compress than gases
 - 3) fluidity—flowing movement
 - 4) **viscosity**—the resistance of a liquid to flow
 - a) viscosity increases with increased attractive forces (directly proportional)
 - b) viscosity increases with increased particle size (directly proportional)
 - c) viscosity increases with increased particle chain length, if applicable (directly proportional)
 - d) viscosity decreases with increased temperature (indirectly proportional)
 - 5) **surface tension**—attraction between molecules on the surface of a liquid
 - a) surface tension makes water bead
 - b) <u>surfactants</u> (surface-active agents)—"wetting agents" which decrease surface tension by breaking hydrogen bonds (soaps)
 - 6) cohesion and adhesion
 - a) **cohesion**—attractive forces between identical molecules
 - b) **adhesion**—attractive forces between different molecules
 - 7) **capillary action**—moving upward, against gravity (up through roots, etc.)
- V. <u>Solids</u>—matter with fixed shape and fixed volume
 - A. **freezing**—conversion of a liquid to a solid
 - B. **<u>sublimation</u>**—conversion of a solid directly to a gas or vapor
 - C. **melting**—conversion of a solid to a liquid at the **melting point** (m.p.)
 - D. types of solids
 - 1) crystalline
 - a) <u>crystal lattice</u>—organized repeating pattern in 3-D
 - b) **unit cell**—smallest repeating unit in a crystal
 - c) <u>allotropes</u>—two or more different arrangements for the same element in the same state (C: graphite, diamond, "buckyballs")



- d) categories and examples of crystalline solids
 - atomic (solids of Group 18 or VIIIA)
 - molecular (sugars)
 - covalent network (quartz)
 - *ionic (BI,TI, other)*
 - metallic (iron)

- 2) **amorphous**—solids without a set structure
 - a) incomplete crystal lattice formed
 - b) rubber, plastics, glass (new research on glass ongoing)
 - c) glass can be called a supercooled liquid

CRYSTAL LATTICES

VI. Other Forms of Matter

- A. **amorphous solids** (amorphous materials)
- B. *liquid crystals*—an intermediate phase formed when solids partially melt in only one or two dimensions (LCD = liquid crystal display)

C. plasmas

- 1) gaseous mixture of cations and electrons
- 2) most common form of matter in the universe but least common on Earth itself
- 3) exists at high temperatures

Phase Changes and Kinetic Energy (K.E.) VII.

- A. Temperature and particle motion
 - 1) temperature—the measure of the average K.E. of particles in a sample
 - 2) **Kelvin** (K) SI base unit of temperature; measures average K.E.
 - a) Kelvin temp α K.E. (*Kelvin temp is directly proportional to K.E.*)
 - b) When temp increases, particle motion increases. When temp decreases, particle motion decreases. (A temp of 300 K has twice the kinetic energy as 150 K.)
 - c) 0 Kelvin = **absolute zero** = no molecular motion
 - d) Absolute zero is theoretical. 0.006 K is the lowest achieved Kelvin temperature.
 - e) no degrees sign (°) is used with Kelvin numbers
 - f) there will never be negative numbers for Kelvin temperatures
 - 3) Kelvin-Celsius conversion equation $\mathbf{K} = \mathbf{C} + 273.15$

EXAMPLE 5) Express 366.13 K in degrees Celsius.

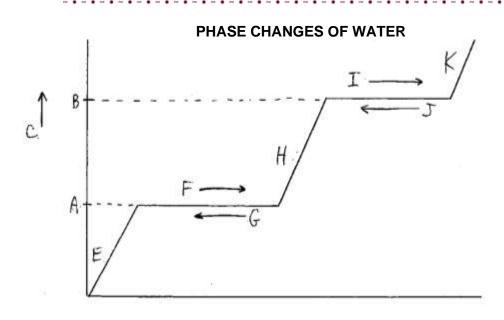
$$K = C + 273.15$$

$$366.13 = C + 273.15$$
 $C = 92.98$ °C

$$C = 92.98 \, ^{\circ}C$$

EXAMPLE 6) Convert a temperature of 45 °C to Kelvin.

$$K = C + 273.15$$


$$K = C + 273.15$$
 $K = 45 + 273.15 = 318 \text{ K}$

B. Changing state; phase changes

IMPORTANT: Temperature does not change during a phase change.

Increasing the temperature will only make the change happen faster.

- 1) evaporation and condensation
 - a) <u>evaporation</u> (vaporization)—conversion of a liquid to a gas or vapor below the boiling point (b.p.)
 - b) **condensation**—conversion from a gas or vapor to a liquid
 - c) <u>dynamic equilibrium</u> (equilibrium = balance)— when evaporation rate equals the condensation rate
- 2) **boiling**—conversion from a liquid to a gas or vapor at the boiling point
 - a) <u>vapor pressure</u>—pressure of evaporated particles in a partially filled, sealed container
 - b) **boiling point** (**b.p.**)—temperature at which the vapor pressure equals the external atmospheric pressure
 - c) **normal boiling point**—b.p. of liquids at standard pressure
 - d) <u>heat of vaporization</u>—the amount of heat necessary to boil or condense 1 mole of a substance at its boiling point
- 3) sublimation and deposition
 - a) **<u>sublimation</u>**—changing from a solid directly to a vapor
 - b) **deposition**—changing from a vapor/gas directly to a solid
- 4) melting and freezing
 - a) melting—changing from a solid to a liquid
 - b) freezing—changing from a liquid to a solid
 - c) <u>heat of fusion</u>—the amount of heat absorbed or given off to melt or freeze 1 mole of substance at its freezing point

A = freezing point, (melting point, 0 °C) B = boiling point (100 °C)

 $C = temperature (^{\circ}C)$

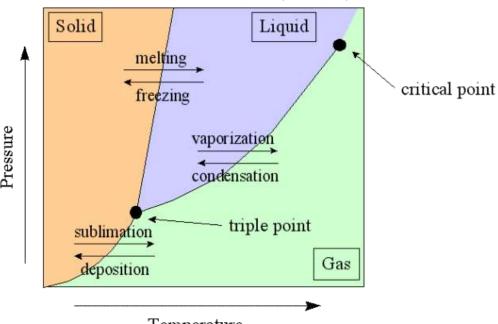
D = time

E = solid F = melting

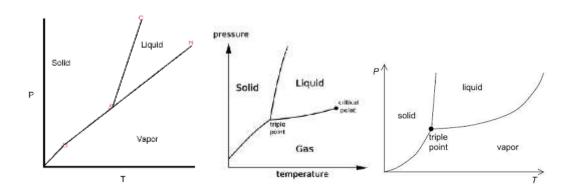
 $G \,=\, freezing$

H = liquid

 $I \ = \ boiling$


J = condensing

K = gas


VIII. **Phase Diagrams**

- A. graph of the relationships between all phases of a substance
- B. consists of three curves and a **triple point**, which is the point where all three
- C. critical point—the point at which the physical properties of the liquid and gaseous states are identical

Temperature

(Sources: scramling, ccuart, csun.edu)